Eye tracking in a human patient simulation environment: Data collection, coding, visualization, and analysis

Human Simulation and Patient Safety Center
Duke University Medical Center

Melanie C. Wright
January 19, 2007
melanie.wright@duke.edu
Human Simulation and Patient Safety Center

- The Human Simulation and Patient Safety Center is a unique, multidisciplinary unit within the Duke University Health System. The 1600 square foot facility maintains both rich educational and research activities.

- The HSPSC has multiple missions including:
 - Education
 - Research
 - Innovation
 - Service and process improvement
Facilities and Resources

- Simulation Room
 - Operating Room
 - Other hospital environments
- Observation Room
 - Computer controlled cameras
 - Audio/video capture and editing
 - Multimedia classroom
- Simulators
 - High fidelity patient simulation
 - METI, Laerdal
 - Physiological parameters
 - Breath and heart sounds
 - Pulses, and more
Benefits of Human Patient Simulators

- Train and practice without risk
- Practice uncommon but critical scenarios
- Allow errors to occur and reach their conclusion
- Evaluate and train interpersonal relationships
- Test limitations of human-machine interface
- Evaluate equipment and procedures without risk
Human Factors

- Designing systems to fit human capabilities and limitations
- Knowledge about the human capabilities and limitations
 - Perception
 - Cognition
 - Physical
- Knowledge of methods for studying humans in work environments
Anesthesia Practice and Patient Safety

- Anesthesia
 - Dynamic
 - Risky
 - Information-rich

- Anesthesia information sources
 - Written and oral communication with patient, providers, labs
 - Visual and auditory displays of monitored patient data
 - Direct observation of patient through sight, smell, hearing
 - Direct observation of environment -- surgical field, suction sounds, fluids

- Source of errors in anesthesia
 - From 54% to 82% of anesthesia mishaps due to “human error” (Weinger; JClinMonComp, 1999)
 - Or is it, “design induced error”? (Endsley et al., Designing for Situation Awareness, 2003)
Eye Tracking

- Evaluate menu scan behavior
- Compare novices and experts (e.g., aviation)
- Evaluate driver attention/distraction
- In anesthesia
 - For memory recall in task analysis (Seagull and Xiao, HFES Proceedings, 2001)
 - To verify check of ETCO2 in intubation (Via et al., IMMS, 2002)
- Equipment
 - Two cameras, scene & pupil, infrared lights, integrate data
 - Desktop, tethered wearable, non-tethered wearable
 - Automated coding, manual coding
Objective Measures of Performance in Simulated Anesthesia: A Comparison of Novices and Experts

- Funded by the Anesthesia Patient Safety Foundation and NIH
- Establish objective measures of provider performance
 - Identify methods that are sensitive to 1) provider experience, and 2) case difficulty
 - Situation awareness measures
 - Checklist measures
 - Eye tracking measures
- Identify key determinants of “expertise” in anesthesia
 - Indicators for assessment
 - Inform training
- Evaluate information access, scan patterns
 - Equipment redesign
Data Collection

- Non-tethered mobile eye tracker, manual coding
- Two anesthesia cases
 - One difficult - open fracture of jaw and leg, trauma, drug & alcohol use, CV complications, head injury
 - One moderate - knee arthroscopy, complications associated with obstructive sleep apnea, intraoperative complication
- 2nd year residents, anesthesiologists with 5 - 15 yrs experience
- Perform cases, with SA stops, eye tracking data collected for entire case
Eye Tracking Data Coding

- Manual
- 62 specific items available as visual “data”
 - Patient monitor, ventilator monitor, mannequin, anesthesia machine, other individual items
- Using Sportstec™ “StudioCode” video analysis software
- Watch video and press buttons for start of each item viewed
- Get: item viewed, start time, stop time, nth instance
<table>
<thead>
<tr>
<th>Data element</th>
<th>count</th>
<th>total time</th>
<th>percent</th>
<th>mean time</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBP</td>
<td>34</td>
<td>00:01:13.92</td>
<td>2.81</td>
<td>00:00:02.17</td>
</tr>
<tr>
<td>CO2 waveform</td>
<td>35</td>
<td>00:01:08.59</td>
<td>2.61</td>
<td>00:00:01.95</td>
</tr>
<tr>
<td>SpO2 waveform</td>
<td>17</td>
<td>00:00:35.46</td>
<td>1.35</td>
<td>00:00:02.08</td>
</tr>
<tr>
<td>Chest - left</td>
<td>11</td>
<td>00:00:33.41</td>
<td>1.27</td>
<td>00:00:03.03</td>
</tr>
<tr>
<td>SpO2</td>
<td>13</td>
<td>00:00:25.87</td>
<td>0.98</td>
<td>00:00:01.99</td>
</tr>
<tr>
<td>EKG waveform</td>
<td>9</td>
<td>00:00:21.97</td>
<td>0.84</td>
<td>00:00:02.44</td>
</tr>
<tr>
<td>etCO2</td>
<td>10</td>
<td>00:00:20.75</td>
<td>0.79</td>
<td>00:00:02.07</td>
</tr>
<tr>
<td>Chest - right</td>
<td>7</td>
<td>00:00:19.95</td>
<td>0.76</td>
<td>00:00:02.85</td>
</tr>
<tr>
<td>Ventilator settings</td>
<td>8</td>
<td>00:00:18.94</td>
<td>0.72</td>
<td>00:00:02.36</td>
</tr>
<tr>
<td>C-collar</td>
<td>8</td>
<td>00:00:18.40</td>
<td>0.7</td>
<td>00:00:02.30</td>
</tr>
<tr>
<td>CRNA</td>
<td>8</td>
<td>00:00:17.28</td>
<td>0.66</td>
<td>00:00:02.16</td>
</tr>
<tr>
<td>VT</td>
<td>7</td>
<td>00:00:15.42</td>
<td>0.59</td>
<td>00:00:02.20</td>
</tr>
<tr>
<td>HR</td>
<td>5</td>
<td>00:00:12.30</td>
<td>0.47</td>
<td>00:00:02.46</td>
</tr>
<tr>
<td>I:E</td>
<td>2</td>
<td>00:00:10.19</td>
<td>0.39</td>
<td>00:00:05.09</td>
</tr>
<tr>
<td>ABP waveform</td>
<td>3</td>
<td>00:00:07.70</td>
<td>0.29</td>
<td>00:00:02.56</td>
</tr>
<tr>
<td>Intubation</td>
<td>3</td>
<td>00:00:07.37</td>
<td>0.28</td>
<td>00:00:02.45</td>
</tr>
<tr>
<td>EKG electrodes</td>
<td>3</td>
<td>00:00:07.28</td>
<td>0.28</td>
<td>00:00:02.42</td>
</tr>
<tr>
<td>Rate</td>
<td>2</td>
<td>00:00:05.60</td>
<td>0.21</td>
<td>00:00:02.80</td>
</tr>
<tr>
<td>Bag</td>
<td>2</td>
<td>00:00:04.76</td>
<td>0.18</td>
<td>00:00:02.38</td>
</tr>
<tr>
<td>Bellows</td>
<td>2</td>
<td>00:00:04.53</td>
<td>0.17</td>
<td>00:00:02.26</td>
</tr>
<tr>
<td>Halothane</td>
<td>2</td>
<td>00:00:04.43</td>
<td>0.17</td>
<td>00:00:02.21</td>
</tr>
<tr>
<td>VTE</td>
<td>2</td>
<td>00:00:04.40</td>
<td>0.17</td>
<td>00:00:02.20</td>
</tr>
</tbody>
</table>
Eye Tracking Data Analysis

- **What do we want to know?**
 - Frequency
 - Dwell time
 - **Sequence**
 - Distribution/coverage
 - Expert vs. novice differences
 - Individual variation within expert or novice groups

- **When?**
 - E.g., immediately post induction
 - At the point of intra-operative event

- **Can we use eye tracking to measure performance?**
Frequency for one subject
How do we get where we need to go?

- Node-link diagrams
- Fading comet representation of time
- Other alternatives?
- Identify key areas of interest
- Statistical analysis of the data
- Comments, suggestions, questions…